Reentrant BCS-BEC crossover and a superfluid-insulator transition in optical lattices.
نویسندگان
چکیده
We study the thermodynamics of a two-species Feshbach-resonant atomic Fermi gas in a periodic potential, focusing in a deep optical potential where a tight binding model is applicable. We show that for a more than half-filled band the gas exhibits a reentrant crossover with decreased detuning (increased attractive interaction), from a paired BCS superfluid to a Bose-Einstein condensate (BEC) of molecules of holes, back to the BCS superfluid, and finally to a conventional BEC of diatomic molecules. This behavior is associated with the nonmonotonic dependence of the chemical potential on detuning and the concomitant Cooper-pair or molecular size, larger in the BCS and smaller in the BEC regimes. For a single filled band we find a quantum phase transition from a band insulator to a BCS-BEC superfluid, and map out the corresponding phase diagram.
منابع مشابه
BCS-BEC crossover in a gas of Fermi atoms with a Feshbach resonance.
We discuss the BCS-BEC crossover in a degenerate Fermi gas of two hyperfine states interacting close to a Feshbach resonance. We show that, by including fluctuation contributions to the free energy similar to that considered by Nozières and Schmitt-Rink, the character of the superfluid phase transition continuously changes from the BCS-type to the BEC-type, as the threshold of the quasimolecula...
متن کامل9 J an 2 00 7 Expansion of a lithium gas in the BEC - BCS crossover
— We present an experimental study of the time of flight properties of a gas of ultra-cold fermions in the BEC-BCS crossover. Since interactions can be tuned by changing the value of the magnetic field, we are able to probe both non interacting and strongly interacting behaviors. These measurements allow us to characterize the momentum distribution of the system as well as its equation of state...
متن کاملBose-Einstein condensation of particle-hole pairs in ultracold fermionic atoms trapped within optical lattices.
We investigate the Bose-Einstein condensation (BEC, superfluidity) of particle-hole pairs in ultracold fermionic atoms with repulsive interactions and arbitrary polarization, which are trapped within optical lattices. In the strongly repulsive limit, the dynamics of particle-hole pairs can be described by a hard-core Bose-Hubbard model. The insulator-superfluid and charge-density-wave- (CDW) su...
متن کاملCritical velocity for superfluid flow across the BEC-BCS crossover.
Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Critical velocities were determined from the abrupt onset of dissipation when the velocity of a moving one-dimensional optical lattice was varied. The...
متن کاملSuperfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance
We investigate strong coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasi-Boson, which can give rise to an additional pair-ing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy (2ν) of the Feshbach resonance two-particle bound state is low...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 109 24 شماره
صفحات -
تاریخ انتشار 2012